

*CDOM isn't listed yet under monitoring

HAB: Harmful Algal Bloom

CTD: Conductivity, Temperature, Depth

DO: Dissolved Oxygen

TP & TDP: Total and Total Dissolved Phosphorus

SRP: Soluble Reactive Phosphorus

NO3: Nitrate NH4: Ammonia

CHN: Carbon, Hydrogen and Nitrogen DOC: Dissolved Organic Carbon

CDOM: Colored Dissolved Organic Material

CHL: Chlorophyll

TSS/VSS: Total Suspended Solids and Volatile Suspended Solids

PC: Phycocyanin

SpCond: Specific Conductivity ESP: Environmental Sample Processor

GLERL 👺

Application of Buoy and Mobile Platform Observing Technologies

I. Johengen¹, S.A. Ruberg², R. Miller¹, D. Palladino¹, D. Stuart¹, H. Purcell¹, S. Constant² and R. Muzz

Western Lake Erie Buoy Monitoring Network

Research Drivers

- Disseminate hourly summary of water quality conditions to better inform the public on the timing and distribution of HABs
- ➤ Inform the Great Lakes Water Quality Annex 4 adaptive management process to establish new target nutrient loads
- Evaluate the importance of resuspension versus riverine inputs for initiating, sustaining, and dispersing blooms (nutrients and seed-stocks)
- > Support calibration and verification of remote sensed estimations produced for the operational HAB Bulletin and developmental HAB Tracker
- ➤ Support calibration and verification of N-P-Z based ecological forecasts

Research Approach

- Developed a network of 4 realtime continuous monitoring buoys to support HABs monitoring and forecasting.
- Data disseminated on GLERL HABs web site and GLOS.
- Buoys deployed from May October and serviced approximately monthly.
- Nutrient concentrations determined hourly.
- · CTD, fluorometry, pH, DO measured every 15 min
- Weekly discrete monitoring provides ground truth, direct measurement of particulate and dissolved toxicity levels, and samples for metagenomics

Monitoring	Buoys
CTD profiles	SRP
TP	Temp
TDP	Cond
SRP	CHL
NO3	PC
NH4	Turbidity
CHN	CDOM,
DOC	pH,
CHL	DO
PC	
Composition	

GLERÎD 😇

Application of Buoy and Mobile Platform Observing Technologies

T.H. Johengen¹, S.A. Ruberg², R. Miller¹, D. Palladino¹, D. Stuart¹, H. Purcell¹, S. Constant² and R. Muz

GLOS-CILER Mobile Platforms

Research Drivers

- Provide detailed spatial and temporal patterns of riverine inputs, thermal structure, and lower food web structure to support lake-scale ecological forecasting and GLERL's LTR programs
- Map distribution of invasive Quagga mussels and bottom habitat characteristics
- Map distributions of HABs as related to river plume and water quality characteristics
- Track vertical migration of HABs to support models and forecasts

Slocum G2 Glider

IVER-2 AU

Research Approach

- Work with Federal (NOAA, EPA, USGS) and Academic Partners (UMD, MTU, UWM, SUNY-ESF) to operate the platforms regionally
- Support local and regional monitoring priorities

Joint mission with EPA and USGS in support of the 2015 Lake Michigan Coordinated Science Monitoring Initiative

Platform	Deployed / Retrieved	# days	# transects	# water column profiles	Linear Distance (km)
AUV	9-25-14	1	2		50 km
Glider	9-18-14 10-17-14	30	MILW boxes 2 lake crossings	3600	660 km
Glider	7-25-14 8-28-14	32	MUSK-MILW 6 lake crossings	2800	784 km
Glider	5-19-14 6-19-14	31	G.H. /MILW boxes 4 lake crossings	2950	679 km
Glider	9-27-13 10-28-13	31	MUSK-MILW 6 crossings	2375	726 km
Glider	6-26-13 7-11-13	16	MUSK/NDBC/MILW 2 crossings	780	266 km

Summary of mission days for GLIDER and AUV applications in 2014

GLERL 👺

Application of Buoy and Mobile Platform Observing Technologies

Future Directions

Buoy Network

- Provide continuous in-lake nutrient monitoring in support of GLWQA Annex 4
- Improve seasonal and weekly HAB forecasts through incorporation of continuous monitoring
- Develop ESP technology to provide near realtime toxicity results (4 times per day)
- $\bullet \ \ \text{Complete NPZ mass-balance models to evaluate importance of various internal dynamics and} \\$ support management scenarios
- Improve data product dissemination to stakeholder through ongoing engagement and outreach.

Mobile Platforms

- Climate and Heat Budgets Evaporation, Lake Levels, Timing and Strength of Stratification, Species Distribution
- Vertical Distributions of HABS AUV mapping and new moored Profiler
- Lake-scale Biophysical Models parameterization and skill assessment
- Repeated time-series to fill in monthly spatial LTR surveys

